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The creep behaviour of hot pressed silicon nitride is investigated in four-point-bend tests at 
temperatures of about 1200 ° C. By use of appropriate creep laws for the primary creep range 
as well as for the secondary range the experimental results can be well described analytically. 

1. I n t r o d u c t i o n  
A knowledge of  the creep behaviour of ceramic 
materials is of  importance in computing the lifetime at 
high temperatures. To consider failure by subcritical 
crack growth as well as creep crack growth one must 
know the time dependent stresses for all locations of 
the loaded structure. 

To allow elementary calculations to be made a 
mostly pure stationary creep behaviour - expressed 
by a simple Nor ton  power law - has been assumed in 
the literature [1-4]. 

For  ceramics with a distinct transient creep portion 
a more complex procedure is necessary. This applies 
to hot-pressed silicon nitride (HPSN), especially 
MgO-doped HPSN. The creep behaviour of this 
ceramic will be investigated in detail. 

Very often creep tests are performed as bending 
tests. Compared with tensile creep tests there are 
essential advantages in the testing procedure, but 
unfortunately much higher expenses in analytical 
evaluation. Here a general procedure to evaluate 
bending creep tests is presented. 

2. A bending bar under creep conditions 
A bending bar of thickness h and width b = 1 is 
considered. The strain rate in a fibre at the distance 
from the middle axis is composed of the elastic defor- 
mation rate dr/E and the creep rate ~c. In agreement 
with Bernoulli's hypothesis the total strain rate is 
linearly distributed through the specimen. I f y  = 2rl/h 
is the normalized distance from the middle axis one 
can write 

~(y) = d (y ) /E  + ~ ( y )  = C, + C2y (1) 

where E is the Young's modulus. 
Fig. 1 shows the geometrical quantities and the 

strain distribution in the bending bar described by 
Equation 1. The first term describes a change Al in 
specimen length. Only for non-symmetrical creep 
behaviour can Al # 0 be expected. The second term 
causes the typical bending behaviour resulting in a 
pure deflection 6. 

The factor C2 is proportional to the deflection rate 
4 

C2 oc 3 (2) 
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C2 can also be considered as the outer fibre bending 
strain 4 b. 

By integrating Equation 1 over the cross-section 
(taking into account that the integral over ~ vanishes) 
one obtains 

1 Pl  
C, = ~ J_, ecdY (3) 

Multiplying Equation 1 by y and repeated integration 

gives 3 P1 215/ 
J_ ~cydy + -  (4) C2 = ~ l E W  

where 
~7/ = ¼h 2 f1_1 d-y dy (5) 

is the rate of the bending moment, and 

W = ~h2b = ~h 2 (6) 

is the moment of inertia. 
From Equation 1 the complete stress strain history 

of an arbitrarily loaded bending bar can be deter- 
mined by solving the differential equation: 

1 3 ;~ 6y3;/ 
E ,~c-t- 2 ;l-l'~dY + 2 Y i ,~cY dy +- -Eh 2 

(7) 

(a) For a static bending test mostly applied in 
lifetime measurements, it yields M = 0. 

(b) For cyclic bending tests one can choose a)/ = 
215/o sin (cot) with the cyclic frequency co. 

(c) A load controlled dynamic bending test is 
characterized by a)/ = constant. 

(d) For the deflection-rate-controlled dynamic 
bending test Equation 4 is simplified to read C2 = 
constant. 

(e) Finally, for a relaxation test in Equation 4 one 
has to insert C2 = 0. 

3. Creep measurements 
The result of a creep test under static load (a)/ = 0) 
obtained by deflection measurements is the pure bend- 
!ng strain rate. The outer fibre bending strain rate ~b 

can be written by use of Equations 1 and 4 as 

~b = 3 f  1 
2 -~k cy d y  (8) 
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Figure 1 Creep portions and geometrical data of a bending bar. 
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Since this creep quantity is proportional  to the deflec- 

tion 6 of  the bending bar one can write 

~ b  = K ~  (9) 

where ~c depends on the geometrical data of  the testing 
arrangement. 

I f  s is the distance between the inner rollers of  a 
four-point bend test one obtains for the testing 
arrangement of  Fig. 2 

4h 
- s2 (10) 

Cree p measurements were performed for three dif- 
ferent hot-pressed Si3N 4 containing 2.5wt % MgO, 
3 wt % MgO (Ceranox NH206) and 5.5 wt % Y203 
(Ceranox NH209, Annawerk, R6denthal) at 1200 and 
1400 ° C. Specimens (3.5 x 4.5 x 45 mm) were dia- 
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Figure 2 Direct deflection measurement for creep tests. 
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mond-machined from plain parallel billets. The outer 
span of the four-point-bending arrangement was 
40mm,  the inner span 20 mm. The deflection 6 was 
measured directly at the specimen so that creep effects 
in the loading rollers and the total loading system had 
no influence on the measurement. As shown in Fig. 2 
the displacements of  the specimen were transmitted by 
a system of three A1203-sticks on a balance. The signal 
of  the displacement pick up was recorded as a measure 
of  the deflection between the inner A1203-sticks. 

Fig. 3 shows some typical creep curves obtained at 
1200 ° C. Whilst both MgO-doped materials show a 
nearly similar creep behaviour, for Y203-doped 
HPSN a significantly lower creep strain can be stated. 
All materials show high primary creep rates directly 
after loading and extended regions of  stationary creep. 

As an example for the effect of  the bending moment  
Fig. 4 shows ~b t curves for the 3 % MgO material at 

15 

10 

I I 

u 

3 * / , ~  

J 
f 

J 

(..,J 

5 2.5*/, MgO --  

Y2 03 
.---- , r I I 

50 lOO 15o 200 

t ime (h) 

Figure 3 Typical creep curves for different HPSN, 1200°C, ~i = 
M / W  = 160MPa. 



o 

% 

r -  

cl_ 

20 

225 

-20 

1 0 - - / / 2  

I I 

160 

120 

50 100 150 
t i m e  {h) 

Figure 4 Creep curves obtained at 1240 ° C and various initial stresses 
for HPSN (3% MgO). 

1240°C. The applied bending moment  is given in 
terms of the elastic outer fibre stress a i = M/W. The 
creep rate ~b decreases with increasing time and reaches 
a stationary value ~.  Similar curves have been obtained 
at 1200°C and for the 2.5% MgO material. Fig. 5 
shows the amount  of  scatter for the 2.5% MgO 
material at 1200 ° C. 

Up to now only the creep quantity ,~b related to pure 
bending has been evaluated. The second creep portion 
(schematically shown in Fig. 1) which is constant over 
the cross-section and causes a pure elongation of  the 
specimen can be measured after the creep test. 

By measuring the distance of Vickers indentations 
situation on the centre line on the side both before and 
after the creep test Al/l  was determined taking into 
account the circular shape of the deformed bending 
bar. This creep port ion is depicted in Fig. 6 as a 
function of  the total effective creep strain eb. 
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Figure 6 Elongation measurements after creep tests at 1200°C. 
HPSN (2.5% MgO). 

4 .  A c r e e p  l a w  f o r  H P S N  
Because of stress redistributions during creep tests it 
makes no sense to describe total creep curves by global 
creep equations, i.e. e b o c t  c. The relationships become 
much more complicated since Equation (7) has to be 
solved using an appropriate local creep law. 

The total creep rate ~c is assumed to be given as the 
sum of  the pr imary creep rate ~p and the stationary 
part  ~s 

ge = gp + g~ (11) 

The stationary part  ~,  often described by Nor ton 's  
law, is modified, taking into account a non-symmetri- 
cal behaviour 

~ = D2~a" (12) 
where 

1 f o r a >  0 
2~ = (13a) 

~ for a < 0 ;0  < ~s < 1 

takes into consideration significantly higher station- 
ary creep rates due to tensile stresses than occurring 
under compressive stresses [5]. In Equation 12 the 
power of  a should be understood as 

a n ,= la n] sgn (a) (13b) 

Various relations have been proposed in the litera- 
ture to describe the primary creep portion. By com- 
parison with measured creep curves one can find the 
most  appropriate formulation. 

At first we discuss the gerieral case that the primary 
creep may be governed by a non-symmetric creep law 
too. 

Therefore, a factor of  non-symmetry 2p is assumed 
also for the primary creep stage 

1 for a > 0 
2p = }(13c) 

~p for a < 0 ;0  < ~p < 1 

On the basis of  the well-known primary creep laws 
proposed by Nadai  [6] and McVetty [7] an appropriate 
combination of both laws can be found to describe 
primary creep of HPSN sufficiently [8] 

~p = ZpBla"~(Bza "2 - ~p)ep-' (14) 
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In a more detailed formulation the absence of creep 
recovery and additional assumptions for the appli- 
cation of the strain-hardening rule can be  taken into 
account by a rewritten form 

i f  = 2pBlonl F(rr, 8p)ep p (14a) 

where F(o, %) equals: 

BE a"2 -- % if IB2a"q > lap[ and asp > 0 

0 if]B2an2[ < I%1 and aev > 0 

and 

i v = 0 if 0",% < 0 

The creep parameters in Equation 14 cannot be taken 
directly from bending creep curves because the stresses 
in the bending bar are not constant with respect to 
time. But they can be determined iteratively by vary- 
ing their values starting with estimated values, com- 
puting the bending moment from Equations 7 and 14, 
and comparing the result with the measured curves. 

Unfortunately, this procedure becomes extremely 
expensive in terms of computer time and costs. 
Therefore, it seems to be preferable to determine the 
creep parameters by approximative straightforward 
methods. Here the evaluation of creep parameters 
from asymptotic solutions of Equations 7 and 14 will 
be outlined in detail. 

4.1. Short- t ime primary creep solut ion 
For very short times the following conditions are 
asymptotically fulfilled: 

(i) The primary creep portions, cumulated within 
short times, are very small compared with their maxi- 
mum values and, this yields 

ep ~ B2 a'2 

(ii) The stresses are equal to the initial stresses 

M 
a = - ~ y  

(iii) Stationary creep portions are small compared 
with primary creep portions 

,% <~ 8p 

With condition (i) Equation 14 becomes 

@ m ~pB1B2o-n*/3p p 

where n* = nl + n2. 
Inserting this into Equation 8 and integration with 

respect to time yields, if conditions (ii) and (iii) are 
taken into account, 

zu _ _3 (1 + p)(2+p)/(l+p) 

2 n* + 2(1 + p )  

X (B1B2)I/O+P)[M/W]n*/(I+p)tl/(I+p)(1 + ~p)  (15) 

4.2. Long-t ime primary creep solut ion 
The long-time primary creep solution is characterized 
by the condition ip --+ 0. With this condition the pri- 
mary creep law, Equation 14a, has to be solved. For 
an approximative calculation an application of the 

simpler expression, Equation 14, is completely suf- 
ficient. 

The condition of vanishing primary creep rate is 
equivalent to 

gv,max = B2a "2 (16) 

The stress distribution for long times will be the sta- 
tionary distribution ao~ (y) given by [3, 9] 

a~ = x H l y  - yo[1/n(M/W) (17) 

where 

and 

H _ 
2 n +  1 

3n 
- - { [ l  Jr" C(;1/(a+l)]/2}(n+l)/n 

{_1/, for Y0 + Y  >~ 0 IZ s 
K = 

--1 for y0 + y < 0 

Yo = --[1 -='/("+°1I[1 + ~ls/(n+l) ] (18) 

The measurable creep quantity e b can be obtained 
by inserting Equation 17 into Equation 8 and per- 
forming the integration. So it results 

~B2(M/W)"2IT~hx'~f(~z~, n, n2) o,max 

with 

f ( a .  n, n2) = 

and 

1 

(m + 2)(m + 1) 

x [(1 + yo)m+'(m + 1 -- Yo) 

+ (1 -- yo)m+~(m + 1 + Y0)] 

/.'n ~--- ~ 2 / ~  

09) 

5.  E s t i m a t i o n  o f  t h e  c r e e p  p a r a m e t e r s  
The estimation procedure for the creep parameters is 
schematically shown in Fig. 7. This procedure will be 
explained in more detail in the following sections. 
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Figure 7 Determinat ion o f  creep parameters -- schematically. 
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Figure 8 Minimum creep rates in dependence of  the 
initial outer fibre stresses. 

5.1. Creep parameters for stat ionary creep 
• b it follows by inserting For the stationary creep rate es 

Equation 12 into Equation 4 taking into account 
M = 0  

~ = DH"(M/W)"cq (20) 

in Fig. 8 log ~b is plotted against log (M/W). For  low 
initial outer fibre stresses ai = M / W  slopes of 
approximately n = 2 occur. For  higher stresses an 
increase in the slope is found. This may not be a real 
effect because acceleration of  creep in the tertiary 
creep range can occur before all stress redistributions 
were finished and the minimum creep rate was reached. 
The region near the expected point of inflection may 
simulate a straight line in the s - t  diagram. 

To obtain the factor D from the location of  the 
straight line in Fig. 8 ~s has to be known. To obtain cq 
the elongation measurements Al/l have to be evalu- 
ated. Solving Equation 3 using Equation 17 gives a 
uniform creep quantity caused by the non-symmetry 
of secondary creep 

d 
d7 ( A / / 0 s  = - -  ~,DW(M/W)"yo (21)  

Combining Equations 20 and 21 yields 

d(A//l) 
Yo - de~ (22) 

For  long times ~ b  ~ ~b can be used and an equation 
suitable to determine ~s follows 

+ +'  

~z~ = \ ~ -  Yo] = li~m~ + d(A l / l ) /dg [  (23) 

The slope in Fig. 6 leads to a neglectable creep in 
compression 

cz s -~0  

From the literature coefficients resulting from creep 
rate measurements in the stationary creep range were 
found to be 

~s = 1/7" = 1/49 [5] 

~, = 1/10" = 1/100 [3] 

Now the factor D can be obtained from Equation (20), 
with 

2 n +  1 
H"~, - - - 2  "-J 

3n 
for ~, = 0. 

From the temperature dependencies in Fig. 8 acti- 
vation energies of Q -- 115 kcal mol ~ for HPSN (3% 
MgO) and Q = 150kcalmol -] for HPSN (2.5% 
MgO) can be concluded. 

5.2. Creep parameters for primary creep 
For short creep times the total creep strain is predomi- 
nantly caused by primary creep. In this region no 
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Figure 9 Log- log  representation of  the creep curves shown 
in Fig. 4. 
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extension •Ill and consequently no non-symmetry are 
evident from Fig. 6. This gives rise to the assumption 
that non-symmetry will only be caused by secondary 
creep. Therefore ap = 1 was used. The small contri- 
bution of  ~s t in the primary creep range with as < 1 is 
neglected. 

By plotting log (eb) against log (t), as shown in Fig. 
9 for HPSN (3% MgO), the exponent p can be deter- 
mined from the slope in the linear part at low strains. 

In Fig. 10 the slopes for all tests for both materials 
are plotted against M~ W. There is a large scatter but, 
as expected from Equation 15, no significant effect of 
M/W. An average value o f p  = 0.8 is obtained from 
Fig. 10. From a diagram log (~b) against log (M/W) 
for a short time (Fig. 11), the exponent n*/(1 + p) can 
be evaluated. From all measurements a value of about 
3.1 can be concluded. With a mean value o f p  = 0.8 
one obtains n* = 5.6 for the exponent characterizing 
initial primary creep. 

B~B2 can be evaluated from the intersection of  the 
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b measured at 1200°C in Figure 12 Total primary creep portion % 
dependence of the initial outer fibre stress. 

straight lines with the ordinate in Fig. 11 if ap is 
known. For  the investigated materials ap = 1 was 
used. 

By plotting log (e~)ma. against log (M/W) using 
Equation 19 from the slope of the regression line the 
exponent n2 can be evaluated in principle. If  as is 
known also the coefficient B2 can be evaluated from 
the intersection with the ordinate. 

Unfortunately, the secondary creep rate ~b is not 
constant during the creep test because the acting 
stresses change from ai = M/W at the beginning to 
a~o < ai for long times. Due to this fact, the indentifi- 
cation of  the correct value Sb .. . .  with the quantity 
coming out by an extrapolation of the final slope as 
shown in Fig. 12 will only be a rough estimation. 

All evaluated creep parameters are given in Table T. 
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Figure 11 Creep strains at a fixed short time (0.1 h) against the initial 
outer fibre stress. £IPSN (2.5% MgO); (rn) 1100 ° C, (zx) 1200 ° C, (A) 
1240°C, (11) 1300°C. HPSN (3% MgO); (O) 1200°C, (O) 1240°C. 

6 .  A p p l i c a t i o n s  
As all creep parameters are known, it is possible now 
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Figure 13 Calculated and measured creep strain ep b for a load chang- 
ing test. 
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to calculate the total stress-strain behaviour of arbi- 
trarily loaded bending bars by solving Equation 7. 
Two examples of application will be briefly considered 
here. 

described load history. The measured data are entered 
as circles in Fig. 13. The agreement is satisfactory if 
one takes into account the usual scattering in creep 
tests. 

6.1. Example 1 : Load-change experiments 
In case of a static four-point bending test the load was 
increased stepwise. The following load history has 
been chosen: M/W = 125MPa for 125h, t50MPa  
for 90 h and 175 MPa for 60 h. In a computer program 
Equation 3 was solved under these conditions. The 
data were taken from Table I for HPSN (2.5% MgO). 
Fig. 13 shows as the result the effective outer fibre 

b against time. In addition a creep test creep strain ec 
was performed for HPSN (2.5% MgO) with the 

6.2. Example 2: Time-dependent stress 
distributions 

For the same material a static bending test under an 
initial bending stress M/W = 225 MPa was computed 
by solution of Equation 7, to determine the stresses at 
all locations of the bending beam for all times. Fig. 14 
represents the time-dependent stress distributions 
starting with the elastic one at the moment of  loading 
(t = 0). With increasing time the stresses become 
reduced at the tensile surface and the neutral axis 

T A B L E  I 

H P S N  (3% MgO) H P S N  (2.5% MgO) H P S N  (¥203) 

Q (kcalmol  1) 115 150 

p 0.8 0.8 
n* 5.6 5.6 

n2 - 1 
BI(1200°C) (MPa, h) - 1.3 x 10 13 
B2(1200°C) (MPa i) _ 1.4 x 10 5 

n 2 2 
D(1200oc)  ( M P a - 2 h  1) 7.1 x 10 9 1.4 × 10 -9 
D(1240°C) (MPa 2h i) 1.8 x 10 -8 5.6 x 10 -9 

BIB 2 (MPa, h) 
I100°C - 1.4 x 10 20 
1200°C 4.5 x 10 -t8 1.8 x 10 -ts 
1240°C 2.7 x 10 tv 1.9 x 10 ~7 
1300°C -- 5.2 X 10 -16 

m 

1 

2 
1•06 x 10 -I° 

Q denotes the activation energy for secondary creep• 
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shifts to the compressive surface. Here the influence of 
non-symmetric creep behaviour becomes evident. The 
stress distribution for an infinite time can be obtained 
from Equation 17 in a closed form. 

In Fig. 15 the outer fibre stress for y = 1 (normal- 
ized to its initial value) is shown as a function of time 
after loading. The value a/~i = 1 corresponds to the 
initial (elastic) stress distribution. 

7. Summary 
In this investigation the creep behaviour of HPSN in 
four-point-bend tests is analysed. The global deforma- 
tion of the specimens can be well described by an 

appropriate creep law taking into account transient 
and stationary creep. 

For special asymptotic cases the creep law can be 
integrated over the whole bending bar and relations 
between the local creep state and the global deforma- 
tions are found. By these asymptotic solutions it is 
possible to determine in a straight forward manner 
from the experiments most parameters of the assumed 
creep law. 

The stationary creep portion yields a Norton 
exponent of n = 2. Non-symmetric effects were 

examined by measuring the expansion of  the specimen 
after the creep test. From these measurements it was 
concluded that stationary creep under compressive 
stresses must be negligible. 
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